Leo Klarner

ML Research Scientist at Isomorphic Labs


 
website_pic.jpg

leojklarner [at] gmail.com


I’m an ML Research Scientist at Isomorphic Labs, where I work on generative AI for drug discovery.

Before joining Iso, I completed my PhD in the Oxford CompStats & Machine Learning (OxCSML) and Protein Informatics (OPIG) groups. My research focused on developing more robust and data-efficient generative models for early-stage drug discovery and protein design, supervised by Profs Yee Whye Teh, Charlotte Deane and Garrett Morris. My work was funded by Oxford’s flagship academic merit scholarship.

During my PhD I interned in the AI team at VantAI in New York and the Data Science and Analytics team at Roche in Basel.

Prior to Oxford, I studied Interdisciplinary Sciences (chemistry, biology, and CS) at ETH Zürich. During this time I designed antimicrobial peptides with Prof Gisbert Schneider and engineered bacteria for targeted cancer therapy with Prof Simone Schürle-Finke.

Publications

2024

  1. Context-Guided Diffusion for Out-of-Distribution Molecular and Protein Design
    Leo Klarner, Tim G. J. Rudner, Garrett M Morris, Charlotte Deane, and Yee Whye Teh
    International Conference on Machine Learning (ICML), 2024

2023

  1. Metropolis Sampling for Constrained Diffusion Models
    Nic Fishman, Leo Klarner, Emile Mathieu, Michael Hutchinson, and Valentin De Bortoli
    Advances in Neural Information Processing Systems (NeurIPS), 2023
  2. GAUCHE: A Library for Gaussian Processes in Chemistry
    Ryan-Rhys Griffiths, Leo Klarner, Henry Moss, Aditya Ravuri, Sang T. Truong, Yuanqi Du, Samuel Don Stanton, Gary Tom, Bojana Ranković, Arian Rokkum Jamasb ... Alpha Lee, Bingqing Cheng, Alan Aspuru-Guzik, Philippe Schwaller, and Jian Tang
    Advances in Neural Information Processing Systems (NeurIPS), 2023
  3. klarner2023qsavi.png
    Drug Discovery under Covariate Shift with Domain-Informed Prior Distributions over Functions
    Leo Klarner, Tim G. J. Rudner, Michael Reutlinger, Torsten Schindler, Garrett M. Morris, Charlotte Deane, and Yee Whye Teh
    International Conference on Machine Learning (ICML), 2023
  4. Diffusion Models for Constrained Domains
    Nic Fishman, Leo Klarner, Valentin De Bortoli, Emile Mathieu, and Michael Hutchinson
    Transactions on Machine Learning Research (TMLR), 2023

2022

  1. Bias in the Benchmark: Systematic experimental errors in bioactivity databases confound
    multi-task and meta-learning algorithms
    Leo Klarner, Michael Reutlinger, Torsten Schindler, Charlotte Deane, and Garrett Morris
    2nd ICML AI for Science Workshop, 2022
    Best Poster Award at 5th AI for Chemistry Conference, 2022